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Open-Source Software and Software Testing

» Software testing research greatly benefits from open-source software
* And the vice versal!

e Linux Research in my group
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Source: Shan Lu, 15 Years of Learning from Mistakes in Building System Software, 22"4 ChinaSys Workshop.
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The Era of Open-Source Chip
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Hardware Design Verification (DV) is Challenging
~ (Software) Testing + Verification

50% 146% >50%

Increase in design Increase in verification Median project time
engineers since 2007 engineers since 2007 spent in verification

Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
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https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

The Lockstep Between Desigh and Verification

F1] [F2 F3] [F4
Specification Fi|[F2| |F1'||F3| |F4

 The design is changing.
Implementation SN 4 - Verification verifies the design.
Verification F1N F2NF1'N F3 N F4 * Verification must keep up!
F1/F2/F3| |F1'/F2/F4

Design F11|F2| |F1T'| [F3||F4
F

Tape-in

Figure. The agile model of hardware design

Source: Yunsup Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.
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Fuzzing: Automated Design-Directed Verification

| Coverage \
Mutational . co-simulation | Reference
Design :
Fuzzer (Comparison) Model

Test
Stimulus
Coverage-Guided Mutator

w_ ChinaSys
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Fuzzing: Hardware vs. Software

» Software fuzzing has been widely accepted and adopted
Highly automated and efficient; significant return on investment (ROI)

[AFLplusplus/AFLplusplus] 4 steps: instrumenting, preparing, fuzzing, managing

[google/o0ss-fuzz] As of August 2023, OSS-Fuzz has helped identify and fix
over 10,000 vulnerabilities and 36,000 bugs across 1,000 projects.

* Hardware fuzzing is more challenging due to various issues
Sophisticated binary-level input/output semantic

High design complexity; similar to highly concurrent programs
Low simulation speed/throughput

Lack of open-source practice (designs, corpus, crash detection, ...)
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Fuzzing CPUs: Coverage Increase

S#1:riscv-tests —S#2:riscv-arch-test —S#3: riscv-dv

of.

85% 72.6% + 9.9%
o i
?ED 15% ==
% - 56.0% + 12.6%
3 65% +
[ : 44.2% + 15.7%
20 55% —+
= r

45% + : : : : : : : | :

0 200 400 000 800 1000

# of inputs / x 103

Fact: the fuzzer achieves limited coverage increase from the start points

Note: data collected by the LibAFL fuzzer with havoc mutator and toggle coverage feedback from rocket-chip.
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Insight!: Exploitation and Exploration

* Literally, mutational fuzzers are very good at exploitation
Mutators generally create a large number of input cases

* However, the exploration is inefficient when applying fuzzing to CPUs
Reason: instruction set architectures (ISAs) are complicated and sophisticated
Recent works improve it with domain-specific knowledge or formal methods

[1] MorFUZZ proposes [ 11001;12111001 ()r;1100 [ fuc;‘ocots [ 00?10 [ nggsi | [2] HyPFUZZ proposes
RISC-V specific L1 e ove mutation /9, formal-assisted
inStrUCtlon mUtatlonS ilmorphab?:(:‘?::f::; rsi functjorliooimoﬂ = " S \ State exploratlon
Y ' Semantic Level Mutation
!lxori XS?OT:?O?S” Zg‘ 01001%- o | 00101@ 2 = Formal tool — Fuzzer @ Vulnerability

[1] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023. MorFuzz: fuzzing processor via runtime instruction morphing enhanced synchronizable co-simulation. In

Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 74, 1307-1324.
[2] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: formal-assisted processor fuzzing. In

Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 77, 1361-1378.
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Fuzzing CPUs: SOTAs have done good jobs

...............................................................................................................................................................................................................................

Interesting? Coverage l
| | \, Feedbacké , DUT
Seed Corpus 1 Corpus 1 Mutator !
> REF
Seed Creation Coverage-Guided Fuzzing Co-Simulation
« [SP’21] DifuzzRTL « [MICRO’21] Dromajo
« [USENIX Security’22] TheHuzz « [MICRO’22] DiffTest

 [GLSVLSI'22] CFG for Processor
e [USENIX Security’23] HyPFuzz

e [USENIX Security’23] MorFuzz

» [DATE’23] SoCFuzzer
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Insight?: Ways to Exploring the State Space

Fuzzing Basics

Start point
® Search range

ﬁ;,wzsz#sas ChinaSys
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Wider Search Scope

Better mutations

More Start Points
Richer seeds




Observations: Fuzzing Horizons are Constrained

4 N/ )

(1) Mutations are not that effective | (2) Sources of seeds are limited
Given the seeds S#3 (riscv-dv): Given the seeds S#4 (force-riscv):
240 224.59 0000000080000 <textd>: # base
m 180 0000000080000100 <textl>: # base+0.25KB
X
§ 120 0000000080011000 <text2>: # base+68KB
? 60 60550@60847#{{8 <text3>: # base+71.5MB
13.96 ......
0 — 00000000a6411d80 <text77>: # base+612MB
Valid Input Used Input || ..
Effective only if targeting 6.2% of input bytes OOM crashes for in-memory fuzzers
. Further decreased to 2.5% after 1M mutations )8 Significant slow down fuzzers with corpus on disk )

ﬁ;.wzsz#sas ChinaSys
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Why: How CPU Fetches and Executes

0000000880 Cca508 <textb>:

880cab8c: 1do3d6ef jal a3,0x8810775c¢

88106b28: 62da92e3 bne s5,a3,0x8810794c

88107088 a8de7ce3 bgeu t3,a3,0x88106b20

88107888 fec65263 bge a2,a2,0x8810706c

This is a case from the seeds S#4 (force-riscv)

ﬁ;,wzsz#sas ChinaSys
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Input Format: The Linear Memory

texto

text7

text8

text9

Linear text10

Address text11
Space

text12
text13
text14
textl5
text16

CPU Test Input

ﬁ;,wzsz#sas ChinaSys
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Insight3: Linear Memory Hides Execution Paths

texto6
text7
text8
text1b
text9
Linear text10 If removing untouched memory contents ...
Agdress text11 e Mutations become more effective
pace

text12 * Seeds’size is significantly reduced

text13
text14
textl5
text16 text16

CPU Test Input CPU Execution Path

i ChinaSys
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Footprint Memory: Capturmg Execution Paths

texto
text7
text8
text9
Linear text10

Address text11
Space text12 :V'\

text13
text14
text1b

text16 text16

Linear Memory Footprint Memory

Chronological
Order of CPU
Execution
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PathFuzz: Overview of the Workflow

PerSIStent . ................................................................................................... : ,
Test Stimuli . Interesting? Coverage | | |
| SeedCorpus | i Feedback :
near] 1  DUT
(Linear) v y :
Corpus > Mutator
Seed Corpus
'p REF
(Footprint)
Seed Creation Coverage-Guided Fuzzing Co-Simulation

Refer to our Paper Section 3.2 for more details in enhancing/adapting the three stages.
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PathFuzz: Broadening Sources of Seed Corpus

* Modern CPU DV reaches a good coverage, let fuzzers take a step further

* The test cases we are currently using for the system-level DV of CPUs

1) hand-written directed tests

e riscv-software-src/riscv-tests

* riscv-non-isa/riscv-arch-test

* riscv-ovpsim/imperas-riscv-tests
* |itmus-tests/litmus-tests-riscv

* josecm/riscv-hyp-tests

\

r

2) instruction-stream generators

e chipsalliance/riscv-dv

e openhwgroup/force-riscv

* ksco/riscv-vector-tests

» sifive/riscv-vector-intrinsic-fuzzing
 chad-g/andes-vector-riscv-dv

\

r

3) real-world programs

* ucb-bar/riscv-benchmarks
e eembc/coremark

e SPEC CPU® 2017
 SPECjbb® 2015

* gcc,clang,rustc,verilator

&;wgsz;zas ChinaSys
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PathFuzz: Enhancing DV with Practical Fuzzing

* Incorporating existing, valuable CPU test cases as seeds for fuzzing
* Extracting the footprints when CPU executes these test cases
* Using the (short-running) footprints as fuzzing seeds

* Contribution: fuzzing with any start point at any program phase
* How: architectural checkpoints + footprint memory

State restorer
Workload image ‘ - Footprint
Checkpoint[1][2] Memory snapshot Linear = Footprint

[1] Nursultan Kabylkas, et al., 2021. Effective Processor Verification with Logic Fuzzer Enhanced Co-simulation. MICRO21.
[2] Yinan Xu, et al., 2023. Towards Developing High Performance RISC-V Processors Using Agile Methodology. MICRO'22.
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Evaluation

* Setup: famous, widely-adopted, open-source projects
Fuzzer: LibAFL v0.10.1 (unmodified QueueScheduler, StdMapObserver, StdFuzzer)
CPU design under test: rocket-chip
CPU reference/golden model: Spike (riscv-isa-sim)

Various seeds, seed count (linear/footprint formats)
S#1.: riscv-tests, 140 (LM, FM)
S#2: riscv-arch-test, 257 (LM, FM)
S#3: riscv-dv, 1150 (LM, FM)
S#4: force-riscv, 969 (FM)
S#5: SPEC CPU2006, 1090 (FM)

* To show the coverage increase, coverage reach, discovered bugs

Swsiee, Chinasys L/



Evaluation: Coverage

—S#3 (LM) S#3 (FM) —=—S#5 (55, FM) ==S#5 (1090, FM)

100%

o 95% 95.3%
o) - 93.1%
g 90% f
> 0
oy |
g 80% || 12.7% (1.28X better)
© 9.9%

L e OSSO SO SO SO - 4

710%

0] 200 400 600 800 1000

# of inputs / x 103

* 95% criteria: formal-assisted HyPFuzz takes 72 hours to achieve 94.9% on CVAG; we take ~10 hours to achieve 95.3% on rocket-chip
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Evaluation: Bugs Insight#: Different seeds help
the fuzzer find different bugs!

s

o

B#2 (Rocket)
ince Dec. 2021

B#1 (Rocket)
Since Mar. 2017

2%
gLy

B#3 (Rocket) B#4 (Spike)

i ChinaSys
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Applying Fuzzing to Open-Source XiangShan

XK ChinaSys ff XIHRE 22K ETREEFIGUE (h) 4
| Version |  #Error/#All(seedcorpus) | |

20230905 *%% / 50000 0
20230907 **%% / 300000 6+ (***/**** analyzed)
*% /1838 (riscv-tests, LM)
** /3772 (riscv-arch-test, LM)
*x% /2181 (riscv-dv, LM)
*** /25087 (riscv-tests, FM)
20230915 _ Not analyzed yet
**/4132 (riscv-arch-test, FM)
*x% /2532 (riscv-dv, FM)
**% /2196 (force-riscv, FM)
***/3751 (SPECCPU2006, FM)

* Preliminary testing results on unstable versions of XiangShan; do not necessarily reflect the final design verification quality.
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Conclusion

* Motivation: broadening the fuzzing horizons on CPUs
More effective mutations, richer seed sources for better exploration capabilities

* PathFuzz: a coverage-guided CPU fuzzing workflow
Input format: both linear and footprint memory
Incorporate large-scale programs as fuzzing seeds

* Evaluation
Achieve better coverage increase/reach
Detect 4 long-standing bugs in well-known projects

* Open-sourced at GitHub with open-source components™
Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.
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https://github.com/OpenXiangShan/xfuzz

Conclusion; Questions?

* Motivation: broadening the fuzzing horizons on CPUs
More effective mutations, richer seed sources for better exploration capabilities

* PathFuzz: a coverage-guided CPU fuzzing workflow
Input format: both linear and footprint memory
Incorporate large-scale programs as fuzzing seeds

* Evaluation
Achieve better coverage increase/reach
Detect 4 long-standing bugs in well-known projects

* Open-sourced at GitHub with open-source components™
Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.
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https://github.com/OpenXiangShan/xfuzz

