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Open-Source Software and Software Testing

• Software testing research greatly benefits from open-source software
• And the vice versa!

Source: Shan Lu, 15 Years of Learning from Mistakes in Building System Software, 22nd ChinaSys Workshop.

• Linux
• FreeBSD
• MySQL
• PostgreSQL
• Apache
• Mozilla
• OpenOffice
• ……
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Hardware Design Verification (DV) is Challenging

50%
Increase in design 

engineers since 2007

146%
Increase in verification 
engineers since 2007

>50%
Median project time 
spent in verification

Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/ 

≈ (Software) Testing + Verification

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/


The Lockstep Between Design and Verification

Source: Yunsup Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

Figure. The agile model of hardware design

• The design is changing.
• Verification verifies the design.
• Verification must keep up!



Fuzzing: Automated Design-Directed Verification
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Fuzzing: Hardware vs. Software

• Software fuzzing has been widely accepted and adopted
• Highly automated and efficient; significant return on investment (ROI)
• [AFLplusplus/AFLplusplus] 4 steps: instrumenting, preparing, fuzzing, managing
• [google/oss-fuzz] As of August 2023, OSS-Fuzz has helped identify and fix

over 10,000 vulnerabilities and 36,000 bugs across 1,000 projects.

• Hardware fuzzing is more challenging due to various issues
• Sophisticated binary-level input/output semantic
• High design complexity; similar to highly concurrent programs
• Low simulation speed/throughput
• Lack of open-source practice (designs, corpus, crash detection, …)



Fuzzing CPUs: Coverage Increase

Note: data collected by the LibAFL fuzzer with havoc mutator and toggle coverage feedback from rocket-chip.
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56.0% + 12.6%

44.2% + 15.7%

72.6% + 9.9%

Fact: the fuzzer achieves limited coverage increase from the start points



Insight1: Exploitation and Exploration

• Literally, mutational fuzzers are very good at exploitation
• Mutators generally create a large number of input cases

• However, the exploration is inefficient when applying fuzzing to CPUs
• Reason: instruction set architectures (ISAs) are complicated and sophisticated
• Recent works improve it with domain-specific knowledge or formal methods

[2] HyPFuzz proposes 
formal-assisted

state exploration

[1] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023. MorFuzz: fuzzing processor via runtime instruction morphing enhanced synchronizable co-simulation. In 
Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 74, 1307–1324.
[2] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: formal-assisted processor fuzzing. In 
Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 77, 1361–1378.

[1] MorFuzz proposes 
RISC-V specific

instruction mutations



Fuzzing CPUs: SOTAs have done good jobs
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Coverage-Guided Fuzzing
• [SP’21] DifuzzRTL
• [USENIX Security’22] TheHuzz
• [GLSVLSI’22] CFG for Processor
• [USENIX Security’23] HyPFuzz
• [USENIX Security’23] MorFuzz
• [DATE’23] SoCFuzzer
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• [MICRO’21] Dromajo
• [MICRO’22] DiffTest



Insight2: Ways to Exploring the State Space

Fuzzing Basics

Wider Search Scope
Better mutations

More Start Points
Richer seeds

Start point
Search range



Observations: Fuzzing Horizons are Constrained

(1) Mutations are not that effective (2) Sources of seeds are limited
Given the seeds S#3 (riscv-dv):

Effective only if targeting 6.2% of input bytes
Further decreased to 2.5% after 1M mutations
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Given the seeds S#4 (force-riscv):

0000000080000000 <text0>:  # base
  ……
0000000080000100 <text1>:  # base+0.25KB
  ……
0000000080011000 <text2>:  # base+68KB
  ……
000000008477fff8 <text3>:  # base+71.5MB
  ……
00000000a6411d80 <text77>: # base+612MB
  ……

OOM crashes for in-memory fuzzers
Significant slow down fuzzers with corpus on disk



Why: How CPU Fetches and Executes
00000000880ca508 <text6>:
  ……
  880ca58c:   1d03d6ef    jal a3,0x8810775c
  ……
0000000088106b20 <text8>:
  ……
88106b28:   62da92e3    bne s5,a3,0x8810794c

  ……
0000000088107068 <text12>:
  ……
88107088:   a8de7ce3    bgeu t3,a3,0x88106b20

  ……
0000000088107758 <text15>:
  ……
88107888:   fec65263    bge a2,a2,0x8810706c
……

0000000088107948 <text16>:
  ……

This is a case from the seeds S#4 (force-riscv)



Input Format: The Linear Memory

text6
text7
text8
text9

text10
text11
text12
text13
text14
text15
text16

CPU Test Input

Linear 
Address
Space



Insight3: Linear Memory Hides Execution Paths
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If removing untouched memory contents …
• Mutations become more effective
• Seeds’ size is significantly reduced



Footprint Memory: Capturing Execution Paths
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PathFuzz: Overview of the Workflow

Corpus Mutator

Coverage-Guided Fuzzing
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Refer to our Paper Section 3.2 for more details in enhancing/adapting the three stages.



PathFuzz: Broadening Sources of Seed Corpus

• Modern CPU DV reaches a good coverage; let fuzzers take a step further

• The test cases we are currently using for the system-level DV of CPUs

• riscv-software-src/riscv-tests
• riscv-non-isa/riscv-arch-test
• riscv-ovpsim/imperas-riscv-tests
• litmus-tests/litmus-tests-riscv
• josecm/riscv-hyp-tests

1) hand-written directed tests

• chipsalliance/riscv-dv
• openhwgroup/force-riscv
• ksco/riscv-vector-tests
• sifive/riscv-vector-intrinsic-fuzzing
• chad-q/andes-vector-riscv-dv

2) instruction-stream generators

• ucb-bar/riscv-benchmarks
• eembc/coremark
• SPEC CPU® 2017
• SPECjbb® 2015
• gcc,clang,rustc,verilator

3) real-world programs



PathFuzz: Enhancing DV with Practical Fuzzing

• Incorporating existing, valuable CPU test cases as seeds for fuzzing
• Extracting the footprints when CPU executes these test cases
• Using the (short-running) footprints as fuzzing seeds

• Contribution: fuzzing with any start point at any program phase
• How: architectural checkpoints + footprint memory

[1] Nursultan Kabylkas, et al., 2021. Effective Processor Verification with Logic Fuzzer Enhanced Co-simulation. MICRO‘21.
[2] Yinan Xu, et al., 2023. Towards Developing High Performance RISC-V Processors Using Agile Methodology. MICRO'22.

State restorer

Memory snapshot
Workload image Footprint

Checkpoint[1][2] Linear à Footprint



Evaluation

• Setup: famous, widely-adopted, open-source projects
• Fuzzer: LibAFL v0.10.1 (unmodified QueueScheduler, StdMapObserver, StdFuzzer)
• CPU design under test: rocket-chip
• CPU reference/golden model: Spike (riscv-isa-sim)
• Various seeds, seed count (linear/footprint formats)

• S#1: riscv-tests, 140 (LM, FM)
• S#2: riscv-arch-test, 257 (LM, FM)
• S#3: riscv-dv, 1150 (LM, FM)
• S#4: force-riscv, 969 (FM)
• S#5: SPEC CPU2006, 1090 (FM)

• To show the coverage increase, coverage reach, discovered bugs



Evaluation: Coverage
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* 95% criteria: formal-assisted HyPFuzz takes 72 hours to achieve 94.9% on CVA6; we take ~10 hours to achieve 95.3% on rocket-chip



S#3 (LM)

S#3 (FM)

S#4 (FM)

S#5 (FM)

Evaluation: Bugs

B#2 (Rocket)
Since Dec. 2021

B#4 (Spike)
Since Dec. 2014

B#1 (Rocket)
Since Mar. 2017

B#3 (Rocket)
Since Dec. 2021

Insight4: Different seeds help 
the fuzzer find different bugs!



Applying Fuzzing to Open-Source XiangShan

Version #Error / #All (seed corpus) Potential Bug Count

20230905 *** / 50000 5

20230907 **** / 300000 6+ (***/**** analyzed)

20230915

**/1838 (riscv-tests, LM)

Not analyzed yet

**/3772 (riscv-arch-test, LM)
***/2181 (riscv-dv, LM)

***/25087(riscv-tests, FM)
**/4132 (riscv-arch-test, FM)

***/2532 (riscv-dv, FM)
***/2196 (force-riscv, FM)

***/3751 (SPECCPU2006, FM)

* Preliminary testing results on unstable versions of XiangShan; do not necessarily reflect the final design verification quality.

欢迎 ChinaSys 社区研究者多多关注开源硬件验证（测试）领域



Conclusion

• Motivation: broadening the fuzzing horizons on CPUs
• More effective mutations, richer seed sources for better exploration capabilities

• PathFuzz: a coverage-guided CPU fuzzing workflow
• Input format: both linear and footprint memory
• Incorporate large-scale programs as fuzzing seeds

• Evaluation
• Achieve better coverage increase/reach
• Detect 4 long-standing bugs in well-known projects

• Open-sourced at GitHub with open-source components*
• Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

https://github.com/OpenXiangShan/xfuzz


Conclusion; Questions?

• Motivation: broadening the fuzzing horizons on CPUs
• More effective mutations, richer seed sources for better exploration capabilities

• PathFuzz: a coverage-guided CPU fuzzing workflow
• Input format: both linear and footprint memory
• Incorporate large-scale programs as fuzzing seeds

• Evaluation
• Achieve better coverage increase/reach
• Detect 4 long-standing bugs in well-known projects

• Open-sourced at GitHub with open-source components*
• Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

https://github.com/OpenXiangShan/xfuzz

