f:‘ 10 SYSTEMS ChlﬂdSys

IIIIII NG THE NEXT GENERATION OF ELECTRONICS

JUNE 23-27, 2024

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

PathFuzz: Broadening Fuzzing Horizons v.-.f..i-'-{!.;;’-'-:-‘.-:.-'.
with Footprint Memory for CPUs

Yinan Xu, Sa Wang, Dan Tang, Ninghui Sun, Yungang Bao

Hinstitute of Computing Technology, Chinese Academy of Sciences (ICT, CAS)

2University of Chinese Academy of Sciences (UCAS)
3Beijing Institute of Open Source Chip (BOSC)

TeptOMItATALET4

INSTITUTE OF COMPUTING TECHNOLOGY , CHINESE ACADEMY OF SCIENCES

805C

Open-Source Software and Software Testing

» Software testing research greatly benefits from open-source software
* And the vice versal!

e Linux Research in my group
¢ Fl’ee BSD BUgS 1..0c jaspLos 6]

* Dcatch [ASPLOS'17]; FCatch [ASPLOS'18]

* MySQL Timing | DR DIE) Shotos SPLOSST
e PostgreSQL

Upgrade [SOSP21]; Cancel [OSDI'22]

PCatch [EuroSys'18] HyperLoop

. 3y y 2 bl
A pa C h e Performance SmartConf [ASPLOS'18] [CIKM17, ICSE'18, & Q’L“ég’;‘e&%'gbzol
H LeamnConf [EuroSys'20] FSE'8, ICSE'19@ 2 []
e Mozilla ICSE’20, CIDR20]
o AutoTap [ICSE9] MLAPI [CSE21]
. emanvuc Trace2Tap [UbiComp'20] Kespor [CSE'22)
¢ OpenOfflce | TAPVis [CHI'21) @ ’
W) ©
¢ N o0 abaﬁe'bacv\e seice’ psot™
------ 0\0 \e((\s D‘a\ 5\}5\6“\5 5‘(\3 0‘\ \Na‘e

Source: Shan Lu, 15 Years of Learning from Mistakes in Building System Software, 22"4 ChinaSys Workshop.

THE CHIPS Ch* S
&To SYSTEMS ina ys -
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm o

The Era of Open-Source Chip

H]
EOS14 =R

ICache TLB

L1 Instruction Cache

L2

! 128bit/cycle

ICache Tags 32.KiB 8-way P
16 Bytes/cycle PC Gen o Integer b
0618 - k. 2 [Re-orde w = |
s Instruction Fetch & PreDecode (4 cycles)] S 4 =
(1-cycle redirect © [& = B
(16 Byte window) e . Buffer = =
Dense L1 BT8 = 5 < =
8 I EEXEX XY] = (ROB)] =
2-cycle redirect] © 3 = Floating| 5 =
Predictor Inst Inst Inst Inst = = 2 w & 5%
(3-cycle redirect) L o 1 Dispatch = =
4-Wide Decode B = =
Return-Address g o i @ 9
Stack a2 LIW, ssue: £ £
ITLB e Rename FIw Wakeup =
FrontEnd L11-Cache = and LSQ, and g
oP Hop op Hop ‘4 J <+ Chkpt ROB Select 38
Execute Rename / Allocate / Retirement * ¥

ReOrder Buffer (128 entries) |

Aem-g @y zTS
ayoe) 71

July\, Sept.

o op Jiop 3 v

[Tloatngpomt | ictril hedul -

ongecn neguerie | Distributed — Data Cache Unit

ez

—— Pissve [[e ueve || MEMIssue E"'f'fg L2 = DTLB

Register File Queue B Queue S Prefetcher [‘

Rt | 32 entries 32 entries 32 entries Cache D-Cache = o)

MSHRSs Pipeline Flush and
[Port] [Port] TPort] TPort] [Port] [Port] [Port] [Port] Redirect Logic
WP JOP jOP jOP 4OP yoP

Jop yop
I

E

EUs

To/From Mem

Shakti

L3 Cache

“46§100"

‘ | | e ‘
(32 entries) BT s Enme; ﬁ Rlsc-mﬁ
88/cycle a8/cycle I—mT‘?_CRﬂ 88/cycle P’::i::' ﬁlh
8 MSHRs L] ’ - - H H
s | s |t SONICBOOMICARRV20] Beihaillntelligent Computing]
U"it 10 entries)

THE CHIPS

ChinaSys

[TO SYSTEMS
o

'SHAPING THE NEXT GENERATION OF ELECTRONICS.

Hardware Design Verification (DV) is Challenging
~ (Software) Testing + Verification

50% 146% >50%

Increase in design Increase in verification Median project time
engineers since 2007 engineers since 2007 spent in verification

Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

° *
pwsitiis ChinaSys _

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

The Lockstep Between Desigh and Verification

F1] [F2 F3] [F4
Specification Fi|[F2| |F1'||F3| |F4

 The design is changing.
Implementation SN 4 - Verification verifies the design.
Verification F1N F2NF1'N F3 N F4 * Verification must keep up!
F1/F2/F3| |F1'/F2/F4

Design F11|F2| |F1T'| [F3||F4
F

Tape-in

Figure. The agile model of hardware design

Source: Yunsup Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

THE CHIPS x
&To SYSTEMS ChlnaSys _

Fuzzing: Automated Design-Directed Verification

| Coverage \
Mutational . co-simulation | Reference
Design :
Fuzzer (Comparison) Model

Test
Stimulus
Coverage-Guided Mutator

w_ ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS

Fuzzing: Hardware vs. Software

» Software fuzzing has been widely accepted and adopted
Highly automated and efficient; significant return on investment (ROI)

[AFLplusplus/AFLplusplus] 4 steps: instrumenting, preparing, fuzzing, managing

[google/o0ss-fuzz] As of August 2023, OSS-Fuzz has helped identify and fix
over 10,000 vulnerabilities and 36,000 bugs across 1,000 projects.

* Hardware fuzzing is more challenging due to various issues
Sophisticated binary-level input/output semantic

High design complexity; similar to highly concurrent programs
Low simulation speed/throughput

Lack of open-source practice (designs, corpus, crash detection, ...)

'a *
pisssitie ChinaSys ,_

Fuzzing CPUs: Coverage Increase

S#1:riscv-tests —S#2:riscv-arch-test —S#3: riscv-dv

of.

85% 72.6% + 9.9%
o i
?ED 15% ==
% - 56.0% + 12.6%
3 65% +
[: 44.2% + 15.7%
20 55% —+
= r

45% + : : : : : : : | :

0 200 400 000 800 1000

of inputs / x 103

Fact: the fuzzer achieves limited coverage increase from the start points

Note: data collected by the LibAFL fuzzer with havoc mutator and toggle coverage feedback from rocket-chip.

® (&) THE cHIPS Ch* S
&TO SYSTEMS ina ys -
sssssssssssssssssssssssssssssss A

Insight!: Exploitation and Exploration

* Literally, mutational fuzzers are very good at exploitation
Mutators generally create a large number of input cases

* However, the exploration is inefficient when applying fuzzing to CPUs
Reason: instruction set architectures (ISAs) are complicated and sophisticated
Recent works improve it with domain-specific knowledge or formal methods

[1] MorFUZZ proposes [11001;12111001 ()r;1100 [fuc;‘ocots [00?10 [nggsi | [2] HyPFUZZ proposes
RISC-V specific L1 e ove mutation /9, formal-assisted
inStrUCtlon mUtatlonS ilmorphab?:(:‘?::f::; rsi functjorliooimoﬂ = " S \ State exploratlon
Y ' Semantic Level Mutation
!lxori XS?OT:?O?S” Zg‘ 01001%- o | 00101@ 2 = Formal tool — Fuzzer @ Vulnerability

[1] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023. MorFuzz: fuzzing processor via runtime instruction morphing enhanced synchronizable co-simulation. In

Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 74, 1307-1324.
[2] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: formal-assisted processor fuzzing. In

Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 77, 1361-1378.

¢

*
U7 T0 SYSTEMS ChlnaSys _

Fuzzing CPUs: SOTAs have done good jobs

...

Interesting? Coverage l
| | \, Feedbacké , DUT
Seed Corpus 1 Corpus 1 Mutator !
> REF
Seed Creation Coverage-Guided Fuzzing Co-Simulation
« [SP’21] DifuzzRTL « [MICRO’21] Dromajo
« [USENIX Security’22] TheHuzz « [MICRO’22] DiffTest

 [GLSVLSI'22] CFG for Processor
e [USENIX Security’23] HyPFuzz

e [USENIX Security’23] MorFuzz

» [DATE’23] SoCFuzzer

Swsiee, Chinasys L/

Insight?: Ways to Exploring the State Space

Fuzzing Basics

Start point
® Search range

ﬁ;,wzsz#sas ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS.

Wider Search Scope

Better mutations

More Start Points
Richer seeds

Observations: Fuzzing Horizons are Constrained

4 N/)

(1) Mutations are not that effective | (2) Sources of seeds are limited
Given the seeds S#3 (riscv-dv): Given the seeds S#4 (force-riscv):
240 224.59 0000000080000 <textd>: # base
m 180 0000000080000100 <textl>: # base+0.25KB
X
§ 120 0000000080011000 <text2>: # base+68KB
? 60 60550@60847#{{8 <text3>: # base+71.5MB
13.96
0 — 00000000a6411d80 <text77>: # base+612MB
Valid Input Used Input || ..
Effective only if targeting 6.2% of input bytes OOM crashes for in-memory fuzzers
. Further decreased to 2.5% after 1M mutations)8 Significant slow down fuzzers with corpus on disk)

ﬁ;.wzsz#sas ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS

Why: How CPU Fetches and Executes

0000000880 Cca508 <textb>:

880cab8c: 1do3d6ef jal a3,0x8810775c¢

88106b28: 62da92e3 bne s5,a3,0x8810794c

88107088 a8de7ce3 bgeu t3,a3,0x88106b20

88107888 fec65263 bge a2,a2,0x8810706c

This is a case from the seeds S#4 (force-riscv)

ﬁ;,wzsz#sas ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS.

Input Format: The Linear Memory

texto

text7

text8

text9

Linear text10

Address text11
Space

text12
text13
text14
textl5
text16

CPU Test Input

ﬁ;,wzsz#sas ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS.

Insight3: Linear Memory Hides Execution Paths

texto6
text7
text8
text1b
text9
Linear text10 If removing untouched memory contents ...
Agdress text11 e Mutations become more effective
pace

text12 * Seeds’size is significantly reduced

text13
text14
textl5
text16 text16

CPU Test Input CPU Execution Path

i ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS

Footprint Memory: Capturmg Execution Paths

texto
text7
text8
text9
Linear text10

Address text11
Space text12 :V'\

text13
text14
text1b

text16 text16

Linear Memory Footprint Memory

Chronological
Order of CPU
Execution

8 LAl THE cHIPS Ch* S
&TO SYSTEMS ina ys e

\

PathFuzz: Overview of the Workflow

PerSIStent : ,
Test Stimuli . Interesting? Coverage | | |
| SeedCorpus | i Feedback :
near] 1 DUT
(Linear) v y :
Corpus > Mutator
Seed Corpus
'p REF
(Footprint)
Seed Creation Coverage-Guided Fuzzing Co-Simulation

Refer to our Paper Section 3.2 for more details in enhancing/adapting the three stages.

o chinasys -
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE i

PathFuzz: Broadening Sources of Seed Corpus

* Modern CPU DV reaches a good coverage, let fuzzers take a step further

* The test cases we are currently using for the system-level DV of CPUs

1) hand-written directed tests

e riscv-software-src/riscv-tests

* riscv-non-isa/riscv-arch-test

* riscv-ovpsim/imperas-riscv-tests
* |itmus-tests/litmus-tests-riscv

* josecm/riscv-hyp-tests

\

r

2) instruction-stream generators

e chipsalliance/riscv-dv

e openhwgroup/force-riscv

* ksco/riscv-vector-tests

» sifive/riscv-vector-intrinsic-fuzzing
 chad-g/andes-vector-riscv-dv

\

r

3) real-world programs

* ucb-bar/riscv-benchmarks
e eembc/coremark

e SPEC CPU® 2017
 SPECjbb® 2015

* gcc,clang,rustc,verilator

&;wgsz;zas ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS

PathFuzz: Enhancing DV with Practical Fuzzing

* Incorporating existing, valuable CPU test cases as seeds for fuzzing
* Extracting the footprints when CPU executes these test cases
* Using the (short-running) footprints as fuzzing seeds

* Contribution: fuzzing with any start point at any program phase
* How: architectural checkpoints + footprint memory

State restorer
Workload image ‘ - Footprint
Checkpoint[1][2] Memory snapshot Linear = Footprint

[1] Nursultan Kabylkas, et al., 2021. Effective Processor Verification with Logic Fuzzer Enhanced Co-simulation. MICRO21.
[2] Yinan Xu, et al., 2023. Towards Developing High Performance RISC-V Processors Using Agile Methodology. MICRO'22.

® L&) THE cHIPS Ch* S
&TO SYSTEMS ina ys -
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm =

Evaluation

* Setup: famous, widely-adopted, open-source projects
Fuzzer: LibAFL v0.10.1 (unmodified QueueScheduler, StdMapObserver, StdFuzzer)
CPU design under test: rocket-chip
CPU reference/golden model: Spike (riscv-isa-sim)

Various seeds, seed count (linear/footprint formats)
S#1.: riscv-tests, 140 (LM, FM)
S#2: riscv-arch-test, 257 (LM, FM)
S#3: riscv-dv, 1150 (LM, FM)
S#4: force-riscv, 969 (FM)
S#5: SPEC CPU2006, 1090 (FM)

* To show the coverage increase, coverage reach, discovered bugs

Swsiee, Chinasys L/

Evaluation: Coverage

—S#3 (LM) S#3 (FM) —=—S#5 (55, FM) ==S#5 (1090, FM)

100%

o 95% 95.3%
o) - 93.1%
g 90% f
> 0
oy |
g 80% || 12.7% (1.28X better)
© 9.9%

L e OSSO SO SO SO - 4

710%

0] 200 400 600 800 1000

of inputs / x 103

* 95% criteria: formal-assisted HyPFuzz takes 72 hours to achieve 94.9% on CVAG; we take ~10 hours to achieve 95.3% on rocket-chip

THE CHIPS x
&To SYSTEMS ChlnaSys _

Evaluation: Bugs Insight#: Different seeds help
the fuzzer find different bugs!

s

o

B#2 (Rocket)
ince Dec. 2021

B#1 (Rocket)
Since Mar. 2017

2%
gLy

B#3 (Rocket) B#4 (Spike)

i ChinaSys

'SHAPING THE NEXT GENERATION OF ELECTRONICS

Applying Fuzzing to Open-Source XiangShan

XK ChinaSys ff XIHRE 22K ETREEFIGUE (h) 4
| Version | #Error/#All(seedcorpus) | |

20230905 *%% / 50000 0
20230907 **%% / 300000 6+ (***/**** analyzed)
*% /1838 (riscv-tests, LM)
** /3772 (riscv-arch-test, LM)
*x% /2181 (riscv-dv, LM)
*** /25087 (riscv-tests, FM)
20230915 _ Not analyzed yet
**/4132 (riscv-arch-test, FM)
*x% /2532 (riscv-dv, FM)
**% /2196 (force-riscv, FM)
***/3751 (SPECCPU2006, FM)

* Preliminary testing results on unstable versions of XiangShan; do not necessarily reflect the final design verification quality.

® L&) THE cHIPS Ch* S
&To SYSTEMS ina ys -
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm o

Conclusion

* Motivation: broadening the fuzzing horizons on CPUs
More effective mutations, richer seed sources for better exploration capabilities

* PathFuzz: a coverage-guided CPU fuzzing workflow
Input format: both linear and footprint memory
Incorporate large-scale programs as fuzzing seeds

* Evaluation
Achieve better coverage increase/reach
Detect 4 long-standing bugs in well-known projects

* Open-sourced at GitHub with open-source components™
Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

S chinasys L/

https://github.com/OpenXiangShan/xfuzz

Conclusion; Questions?

* Motivation: broadening the fuzzing horizons on CPUs
More effective mutations, richer seed sources for better exploration capabilities

* PathFuzz: a coverage-guided CPU fuzzing workflow
Input format: both linear and footprint memory
Incorporate large-scale programs as fuzzing seeds

* Evaluation
Achieve better coverage increase/reach
Detect 4 long-standing bugs in well-known projects

* Open-sourced at GitHub with open-source components™
Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

S chinasys L/

https://github.com/OpenXiangShan/xfuzz

