
PathFuzz: Broadening Fuzzing Horizons
with Footprint Memory for CPUs
Yinan Xu, Sa Wang, Dan Tang, Ninghui Sun, Yungang Bao
1Institute of Computing Technology, Chinese Academy of Sciences (ICT, CAS)
2University of Chinese Academy of Sciences (UCAS)
3Beijing Institute of Open Source Chip (BOSC)

Open-Source Software and Software Testing

• Software testing research greatly benefits from open-source software
• And the vice versa!

Source: Shan Lu, 15 Years of Learning from Mistakes in Building System Software, 22nd ChinaSys Workshop.

• Linux
• FreeBSD
• MySQL
• PostgreSQL
• Apache
• Mozilla
• OpenOffice
• ……

The Era of Open-Source Chip
UC Berkeley[HotChips’15]

Beihai[Intelligent Computing]

XiangShan[MICRO’22]

Shakti

SonicBOOM[CARRV’20]

Hardware Design Verification (DV) is Challenging

50%
Increase in design

engineers since 2007

146%
Increase in verification
engineers since 2007

>50%
Median project time
spent in verification

Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

≈ (Software) Testing + Verification

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

The Lockstep Between Design and Verification

Source: Yunsup Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

Figure. The agile model of hardware design

• The design is changing.
• Verification verifies the design.
• Verification must keep up!

Fuzzing: Automated Design-Directed Verification

Design

Test
Stimulus

Reference
Model

Co-simulation

(Comparison)
Mutational

Fuzzer

Coverage

Coverage-Guided Mutator

Fuzzing: Hardware vs. Software

• Software fuzzing has been widely accepted and adopted
• Highly automated and efficient; significant return on investment (ROI)
• [AFLplusplus/AFLplusplus] 4 steps: instrumenting, preparing, fuzzing, managing
• [google/oss-fuzz] As of August 2023, OSS-Fuzz has helped identify and fix

over 10,000 vulnerabilities and 36,000 bugs across 1,000 projects.

• Hardware fuzzing is more challenging due to various issues
• Sophisticated binary-level input/output semantic
• High design complexity; similar to highly concurrent programs
• Low simulation speed/throughput
• Lack of open-source practice (designs, corpus, crash detection, …)

Fuzzing CPUs: Coverage Increase

Note: data collected by the LibAFL fuzzer with havoc mutator and toggle coverage feedback from rocket-chip.

45%

55%

65%

75%

85%

0 200 400 600 800 1000

To
gg

le
 C

ov
er

ag
e

of inputs / × 103

S#1: riscv-tests S#2: riscv-arch-test S#3: riscv-dv

56.0% + 12.6%

44.2% + 15.7%

72.6% + 9.9%

Fact: the fuzzer achieves limited coverage increase from the start points

Insight1: Exploitation and Exploration

• Literally, mutational fuzzers are very good at exploitation
• Mutators generally create a large number of input cases

• However, the exploration is inefficient when applying fuzzing to CPUs
• Reason: instruction set architectures (ISAs) are complicated and sophisticated
• Recent works improve it with domain-specific knowledge or formal methods

[2] HyPFuzz proposes
formal-assisted

state exploration

[1] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023. MorFuzz: fuzzing processor via runtime instruction morphing enhanced synchronizable co-simulation. In
Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 74, 1307–1324.
[2] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: formal-assisted processor fuzzing. In
Proceedings of the 32nd USENIX Conference on Security Symposium (SEC '23). USENIX Association, USA, Article 77, 1361–1378.

[1] MorFuzz proposes
RISC-V specific

instruction mutations

Fuzzing CPUs: SOTAs have done good jobs

Seed Corpus

Seed Creation

Corpus Mutator

Coverage
Feedback

Interesting?

Coverage-Guided Fuzzing
• [SP’21] DifuzzRTL
• [USENIX Security’22] TheHuzz
• [GLSVLSI’22] CFG for Processor
• [USENIX Security’23] HyPFuzz
• [USENIX Security’23] MorFuzz
• [DATE’23] SoCFuzzer

REF

DUT

Co-Simulation
• [MICRO’21] Dromajo
• [MICRO’22] DiffTest

Insight2: Ways to Exploring the State Space

Fuzzing Basics

Wider Search Scope
Better mutations

More Start Points
Richer seeds

Start point
Search range

Observations: Fuzzing Horizons are Constrained

(1) Mutations are not that effective (2) Sources of seeds are limited
Given the seeds S#3 (riscv-dv):

Effective only if targeting 6.2% of input bytes
Further decreased to 2.5% after 1M mutations

224.59

13.96
0

60

120

180

240

Valid Input Used Input

Si
ze

 /
 K

B

Given the seeds S#4 (force-riscv):

0000000080000000 <text0>: # base
 ……
0000000080000100 <text1>: # base+0.25KB
 ……
0000000080011000 <text2>: # base+68KB
 ……
000000008477fff8 <text3>: # base+71.5MB
 ……
00000000a6411d80 <text77>: # base+612MB
 ……

OOM crashes for in-memory fuzzers
Significant slow down fuzzers with corpus on disk

Why: How CPU Fetches and Executes
00000000880ca508 <text6>:
 ……
 880ca58c: 1d03d6ef jal a3,0x8810775c
 ……
0000000088106b20 <text8>:
 ……
88106b28: 62da92e3 bne s5,a3,0x8810794c

 ……
0000000088107068 <text12>:
 ……
88107088: a8de7ce3 bgeu t3,a3,0x88106b20

 ……
0000000088107758 <text15>:
 ……
88107888: fec65263 bge a2,a2,0x8810706c
……

0000000088107948 <text16>:
 ……

This is a case from the seeds S#4 (force-riscv)

Input Format: The Linear Memory

text6
text7
text8
text9

text10
text11
text12
text13
text14
text15
text16

CPU Test Input

Linear
Address
Space

Insight3: Linear Memory Hides Execution Paths

text6
text7
text8
text9

text10
text11
text12
text13
text14
text15
text16

CPU Test Input

Linear
Address
Space

CPU Execution Path

text6

text8

text12

text15

text16

If removing untouched memory contents …
• Mutations become more effective
• Seeds’ size is significantly reduced

Footprint Memory: Capturing Execution Paths

text6
text7
text8
text9

text10
text11
text12
text13
text14
text15
text16

Linear Memory

Linear
Address
Space

Footprint Memory

text6

text8

text12

text15

text16

Chronological
Order of CPU

Execution

PathFuzz: Overview of the Workflow

Corpus Mutator

Coverage-Guided Fuzzing

Coverage
Feedback

Interesting?
Seed Corpus

(Linear)

Seed Corpus
(Footprint)

Seed Creation

REF

DUT

Co-Simulation

Persistent
Test Stimuli

Refer to our Paper Section 3.2 for more details in enhancing/adapting the three stages.

PathFuzz: Broadening Sources of Seed Corpus

• Modern CPU DV reaches a good coverage; let fuzzers take a step further

• The test cases we are currently using for the system-level DV of CPUs

• riscv-software-src/riscv-tests
• riscv-non-isa/riscv-arch-test
• riscv-ovpsim/imperas-riscv-tests
• litmus-tests/litmus-tests-riscv
• josecm/riscv-hyp-tests

1) hand-written directed tests

• chipsalliance/riscv-dv
• openhwgroup/force-riscv
• ksco/riscv-vector-tests
• sifive/riscv-vector-intrinsic-fuzzing
• chad-q/andes-vector-riscv-dv

2) instruction-stream generators

• ucb-bar/riscv-benchmarks
• eembc/coremark
• SPEC CPU® 2017
• SPECjbb® 2015
• gcc,clang,rustc,verilator

3) real-world programs

PathFuzz: Enhancing DV with Practical Fuzzing

• Incorporating existing, valuable CPU test cases as seeds for fuzzing
• Extracting the footprints when CPU executes these test cases
• Using the (short-running) footprints as fuzzing seeds

• Contribution: fuzzing with any start point at any program phase
• How: architectural checkpoints + footprint memory

[1] Nursultan Kabylkas, et al., 2021. Effective Processor Verification with Logic Fuzzer Enhanced Co-simulation. MICRO‘21.
[2] Yinan Xu, et al., 2023. Towards Developing High Performance RISC-V Processors Using Agile Methodology. MICRO'22.

State restorer

Memory snapshot
Workload image Footprint

Checkpoint[1][2] Linear à Footprint

Evaluation

• Setup: famous, widely-adopted, open-source projects
• Fuzzer: LibAFL v0.10.1 (unmodified QueueScheduler, StdMapObserver, StdFuzzer)
• CPU design under test: rocket-chip
• CPU reference/golden model: Spike (riscv-isa-sim)
• Various seeds, seed count (linear/footprint formats)

• S#1: riscv-tests, 140 (LM, FM)
• S#2: riscv-arch-test, 257 (LM, FM)
• S#3: riscv-dv, 1150 (LM, FM)
• S#4: force-riscv, 969 (FM)
• S#5: SPEC CPU2006, 1090 (FM)

• To show the coverage increase, coverage reach, discovered bugs

Evaluation: Coverage

70%

75%

80%

85%

90%

95%

100%

0 200 400 600 800 1000

To
gg

le
 C

ov
er

ag
e

of inputs / × 103

S#3 (LM) S#3 (FM) S#5 (55, FM) S#5 (1090, FM)

9.9%
12.7% (1.28X better)

93.1%
95.3%

86.3%

* 95% criteria: formal-assisted HyPFuzz takes 72 hours to achieve 94.9% on CVA6; we take ~10 hours to achieve 95.3% on rocket-chip

S#3 (LM)

S#3 (FM)

S#4 (FM)

S#5 (FM)

Evaluation: Bugs

B#2 (Rocket)
Since Dec. 2021

B#4 (Spike)
Since Dec. 2014

B#1 (Rocket)
Since Mar. 2017

B#3 (Rocket)
Since Dec. 2021

Insight4: Different seeds help
the fuzzer find different bugs!

Applying Fuzzing to Open-Source XiangShan

Version #Error / #All (seed corpus) Potential Bug Count

20230905 *** / 50000 5

20230907 **** / 300000 6+ (***/**** analyzed)

20230915

**/1838 (riscv-tests, LM)

Not analyzed yet

**/3772 (riscv-arch-test, LM)
***/2181 (riscv-dv, LM)

***/25087(riscv-tests, FM)
**/4132 (riscv-arch-test, FM)

***/2532 (riscv-dv, FM)
***/2196 (force-riscv, FM)

***/3751 (SPECCPU2006, FM)

* Preliminary testing results on unstable versions of XiangShan; do not necessarily reflect the final design verification quality.

欢迎 ChinaSys 社区研究者多多关注开源硬件验证（测试）领域

Conclusion

• Motivation: broadening the fuzzing horizons on CPUs
• More effective mutations, richer seed sources for better exploration capabilities

• PathFuzz: a coverage-guided CPU fuzzing workflow
• Input format: both linear and footprint memory
• Incorporate large-scale programs as fuzzing seeds

• Evaluation
• Achieve better coverage increase/reach
• Detect 4 long-standing bugs in well-known projects

• Open-sourced at GitHub with open-source components*
• Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

https://github.com/OpenXiangShan/xfuzz

Conclusion; Questions?

• Motivation: broadening the fuzzing horizons on CPUs
• More effective mutations, richer seed sources for better exploration capabilities

• PathFuzz: a coverage-guided CPU fuzzing workflow
• Input format: both linear and footprint memory
• Incorporate large-scale programs as fuzzing seeds

• Evaluation
• Achieve better coverage increase/reach
• Detect 4 long-standing bugs in well-known projects

• Open-sourced at GitHub with open-source components*
• Contribute to the reproducible, reusable research community

* https://github.com/OpenXiangShan/xfuzz. Thank LibAFL, rfuzz, DifuzzRTL, SIC, and DiffTest.

https://github.com/OpenXiangShan/xfuzz

